Archive

Archive for the ‘Veeam’ Category

VMware vDP and Avamar – Blown out of Proportion

October 8, 2012 2 comments

The dust has settled a bit since the announcement of vSphere 5.1, including the new VMware Data Protector (vDP) functionality based on EMC Avamar code.   Immediately following the announcement there were:

  • EMC folks reporting this proves Avamar is the greatest thing since sliced bread because VMware chose Avamar Virtual Edition (AVE) as the basis for vDP
  • VMware folks stating vDP only leverages Avamar technology – it is a new product co-developed by VMware and EMC rather than AVE with a new GUI.
  • Critics/Competitors saying they are two completely different products and this announcement doesn’t mean anything or this announcement means the world will be running Hyper-V in 12-18 months as EMC takes over VMware and fails miserably.

What’s my opinion?  Being a middle-of-the-road guy, naturally I think both the far left and right are blowing things out of proportion and VMware employees were generally the most accurate in their assessments.    

We can hold these things to be self-evident:

  • vDP is a virtual appliance.  AVE is a virtual appliance.   One would find it highly unlikely that VMware would completely re-write the virtual appliance used for vDP, but we don’t know for sure.
  • The vDP GUI is a heck of a lot simpler to manage for the average SMB shop than AVE.  EMC needs to learn a lesson here and quickly – not just for SMB customers but also Enterprise customers running full-blown Avamar. 
  • vDR was getting a little bit better, but a scan of the VMware Community Forums quickly showed it was a poor product.  Even the smallest of SMB shops did not like it and usually ended up going the Veeam route after struggling to get vDR working.
  • Avamar does have best-in-class de-duplication algorithms so it’s not hard to accept the argument that VMware evaluated different de-dupe technologies and picked Avamar’s to the be nuts and bolts under vDP.
  • I wouldn’t try to outsmart Joe Tucci.  We might see some pushing of the envelope with regards to the EMC-VMware relationship, but he’s not going to screw this thing up. 

 

Questions in my mind…

  • AVE was very performance hungry.  In fact, before install it required a benchmark test be run for 24-48 hours that was very disk intensive.  If certain specs were not met, EMC would not support the AVE configuration.    This is why EMC almost always sells Avamar as a HW/SW appliance.   In my mind, the typical vDP user is probably going to use some very low-cost storage as the backup repository.  I wonder how this product is going to perform unless some significant performance enhancements were made to the vDP product relative to AVE. 
  • Even the smallest of SMB’s typically want their backups to be stored off-site, and vDP doesn’t offer any replication capability, nor does it offer any sort of tape-out mechanism.    Is this really a practical solution for anybody nowadays?
  • Is there an upgrade path from vDP to full Avamar?   I’ve seen EMC employees post in their blogs that there is a clear upgrade path if you outgrow vDP, every other post I’ve seen says there is no upgrade path.  I’ve not been able to find any official documentation about the upgrade path.  Which is it, and is there an expensive PS engagement involved? 

 

All in all, the providers of SMB-oriented VMware backup solutions such as Veeam don’t have much to be worried about yet.    It’s a strange world of “coopetition” that we live in today.   EMC and VMware cooperating on vDP.  VMware partnering with all storage vendors, yet being majority owned by EMC.    EMC partnering closely with Microsoft and beefing up Hyper-V support in all their products.   All storage vendors partnering closely with Oracle, but Oracle getting into the storage business.   Cisco partnering with NetApp on FlexPod and also with VCE on vBlock.  EMC pushing Cisco servers to their clients but also working with Lenovo for some server OEM business.      The list goes on and all indications are this is the new reality we will be living with for some time.  

What would I do if I were Veeam or another provider of SMB backup for virtual machines?  Keep continuing to innovate like crazy, as Veeam has done.  It’s no different than what VMware needs to keep doing to ensure they stay ahead of Microsoft.   Might I suggest for Veeam specifically, amp up the “coopetition” and build DD BOOST support into your product.    DataDomain is the best-in-class target de-dupe appliance with the most market share.  Unfortunately, the way Veeam and DD work together today is kludgey at best.   Although Veeam can write to NFS storage, it does not work well with a NFS connection directly to the DD appliance.   Rather, it is recommended to setup an intermediary Linux server to re-export the NFS export from the DD box.    A combination of Veeam with DD BOOST and something like a DD160 for the average SMB shop would be a home run and crush vDP as a solution any day of the week.    I have heard that Quest vRanger recently built support for DD BOOST into their product and it will be interesting to see if that remains now that Quest was purchased by Dell. 

 

 

Advertisements

Strategies for SRM with a VNXe

June 18, 2012 1 comment

Give credit where credit is due, EMC does a lot of things well.   VMware Site Recovery Manager (SRM) support for the VNXe is definitely not one of those.   EMC has done such a great job turning the ship around when it comes to VMware integration with their products thanks to guys like Chad Sakac (@sakacc), that it is beyond mind-boggling to me as to why it is taking such a long time to get this straightened out on the VNXe.  

Originally, it was stated that VNXe would support SRM when SRM 5.0 came out (Q3 2011), at least with NFS and iSCSI would be later down the road.  Then, the date slipped to Q4 2011, and again to Q1 2012, and again to Q3 2012, and I just saw an update on the EMC community forums where it’s now stated as Q4 2012 (https://community.emc.com/thread/127434).   Let me be clear to EMC and their engineering group, this is not acceptable.    Customers who have bought this product with the intent to move to fully replicated vSphere environments have a right to be pissed.   Partners who are responsible for designing best-in-class high-availability solutions for their SMB customers have a right to be pissed.   We don’t have unreasonable expectations or unrealistic high demands.   EMC just screwed this one up badly.

What I find most incomprehensible of all is the fact that the VNXe software is largely based on the underpinnings of the previous Celerra (NAS) product.   Celerra had SRM support for both NFS and iSCSI previously!  For Pete’s sake, how hard can it be to modify this?!?!    In a recent explanation, it was stated that the API’s were changing between SRM 4.x and 5.x.   Well, somehow every other major storage array from EMC and other manufacturers didn’t seem to have a hiccup from this in their support of SRM.   Obviously, EMC is going to focus on the high-dollar VMAX and VNX platforms first, but no excuse to let your SMB product lag this far behind.

OK, now that the rant is out of the way, what options do you have to achieve a fully replicated solution for your vSphere environment?    It really boils down to two market-proven options, though you may come across some other fringe players:

 

1)Ÿ  SRM w/ vSphere Replication

      Seamless Disaster Recovery failover and testing

      Tightly integrated into vSphere and vCenter

      Easy per-VM replication management within vCenter

      Storage agnostic – no vendor lock-in with array replication

Ÿ2) Veeam

      Leverages backup snapshot functionality to also replicate to a remote Veeam server

      Storage agnostic

      Offers ability to do a file-level restore from remote replicas

      Included as part of Veeam Backup and Replication product.

 

Here’s a table I put together showing a comparison between the two options:

  Veeam Replication SRM w/ vSphere Replication
vSphere version required 4.0 and higher 5.0 (HW Version 7 or higher required on VMs)
Replication Methodology VM Snapshots vSCSI block tracking
Realistic best-case RPO 15 min 15 min
Includes Backup Yes No
Licensing Per socket Per VM
VSS quiescing Yes (custom VSS driver) Yes (VM Tools VSS)
Replicate powered-off VMs Yes No
File Level Restore from Replica Yes No
Orchestrated Failover based on defined DR plan No Yes
Easy non-disruptive DR testing capabilities No Yes
Multiple Restore Points from Replica Yes No
Re-IP VM during failover Yes Yes

 

So, how do you choose between the two?   Well, that’s where the proverbial “it depends” answer comes in.   When I’m speaking with SMB market customers, I’ll ask questions about their backup to get a sense as to whether or not they could benefit from Veeam.   If so, then it’s certainly advantageous to try and knock-out backup and replication with one product.   However, that’s not to say that there can’t be advantages to running Veeam for backup but using SRM with vSphere Replication as well, if you truly need that extra level of automation that SRM offers.

 

UPDATE 10/2/2012

I recently got notified about an update to the original post on the EMC community forums: https://community.emc.com/thread/127434.   An EMC representative has just confirmed that the target GA date is now Q1 2013….which marks another slip.

Also, with the announcement of vSphere 5.1 came a few improvements to vSphere Replication with SRM.   Most notably, SRM now supports auto-failback with vSphere Replication, which previously was a function only supported with array-based replication.

Categories: EMC, Veeam, VMware

A look at Block Compression and De-duplication with Veeam and EMC VNX

March 26, 2012 4 comments

Before I proceed any further, I want to state clearly that the testing I performed was not to pit one alternative vs. another.   Rather, I was curious to do some testing to see what type of Block LUN Compression rates I could get for backup data written to a CX4/VNX, including previously de-duped data.   At the same time, I had a need to do some quick testing in the lab comparing Veeam VSS vs. VMware Tools VSS snapshot quiescing.    Since Veeam does de-duplication of data, I ended up just using the backup data that Veeam wrote to disk for my Block LUN Compression tests.

Lab Environment

My lab consists of a VNX5300, a Veeam v6 server, and vSphere 5 running on Cisco UCS.   The VM’s I backed up with Veeam included a mix of app, file, and database VMs.  App/File constituted about 50% of the data and DB was the other 50%.   By no means will I declare this to be a scientific test, but these were fairly typical VM’s that you might find in a small customer environment and I didn’t modify the data sets in any way to try and enhance results.

Veeam VSS Provider Results

For those not aware, most VADP backup products will quiesce the VM by leveraging MS VSS.  Some backup applications provide their own VSS provider (including Veeam), and others like vDR rely on the VMware VSS provider that gets installed along with VMware tools.   With Veeam, it’s possible to configure a job that quiesces the VM with or without their own provider.   My results showed the Veeam VSS provider was much faster than VMware’s native VSS.   On average Veeam created the backup snapshot in 3 seconds with their provider, and 20 seconds without it.   I also ran some continuous ping tests to the VM’s while this process was occurring, and 1/3 of the time I noticed a dropped ping or two when the snapshot was being created with VMware’s VSS provider.   A dropped ping is not necessarily a huge issue in itself, but certainly the longer the quiescing and snapshot process takes, the bigger your window for a “hiccup” to occur, which may be noticed the applications running on that server.

De-dupe and Compression Results

I ran two tests leveraging Veeam and a 200GB Thin LUN on the VNX5300.

Test 1

The settings used for this test were:

  • ·         Veeam De-dupe = ON
  • ·         Veeam In-line compression = ON
  • ·         EMC Block LUN Compression = Off
  Backup Job Size
Backup Job 1 6GB
Backup Job 2 1.2GB
Backup Job 3 12.3GB

 

The final space usage on the LUN was 42GB.   I then turned on Block LUN Compression and no additional savings were obtained, which was to be expected since the data had already been compressed.

Test 2

The settings used for this test were:

  • ·         Veeam De-dupe = ON
  • ·         Veeam In-line compression = Off
  • ·         EMC Block LUN Compression = ON
  Backup Job Size
Backup Job 1 13.6GB
Backup Job 2 3.4GB
Backup Job 3 51.3GB

 

The final space usage on the LUN was 135GB.  I then turned on VNX Block LUN Compression and the consumed space was reduced to 60GB – a 2.3:1 compression ratio or a 56% space savings.  Not too shabby for compression.   More details on how EMC’s Block LUN Compression are available at this link: http://www.emc.com/collateral/hardware/white-papers/h8045-data-compression-wp.pdf

In short, it looks at 64KB segments of data and tries to compress data within each segment. 

Again, this post isn’t about comparing de-dupe or compression rates between Veeam’s software approach within the backup job, or letting the storage hardware do the work.   There are going to be pros and cons to both methods.   For longer retentions (30 days and beyond), I tend to recommend a Purpose-built Backup Appliance (PBBA) that does variable-length block de-duplication.  Rather, for these tests I was out to confirm:

a)      Does Block LUN Compression work well for backup data (whether it has been de-duped or not)?  The conclusion here was Block LUN Compression worked quite well.  I really didn’t know what to expect, so the results were a pleasant surprise.   In hindsight, it does make sense that the data could still compress fairly well.   Although de-dupe has eliminated redundant patterns of blocks, if the remaining post-dedupe blocks still contain data that is compressable, you should be able to squeeze more out of it. This could come in handy for situations where B2D is leveraged and your backup software doesn’t offer compression, or shorter retentions that don’t warrant a PBBA that does variable-length block de-duplication.   

 

b)      The latest version of Veeam is quite impressive, they’ve done some nice things to enhance the architecture so it can scale out as larger enterprise backup software does.   The level of de-dupe and compression achieved within the software was impressive as well.   I can certainly understand why a large number of mid-market customers I speak with have little interest in using vDR for VM image backups as Veeam is still light-years ahead.    If you’re looking at these two products and you have highly-transactional systems in your environment such as busy SQL or Exchange boxes, you’ll be better off with Veeam and its enhanced VSS capabilities. 

Categories: Backup, De-dupe, EMC, Veeam, VMware